Wednesday 31 March 2010

Experiment at CERN (Europe) about Atomic Collision

In Search of God? Or His mechanism (Existed/Existing)?
------------------
Scientists on Tuesday are stepping up efforts to detect the elusive 'God Particle' by triggering collision of two proton beams in the world's largest atom smasher located on the Franco-Swiss border on the outskirts of Geneva.
The two proton beams, set in motion in opposite directions of two 27-km long pipes of the Large Hadron Collider (LHC) in November last year, are currently moving at 3.5 trillion electron volts (TeV) with each beam of the protons going around the device 11,000 times every second.
Physicists at the European Organisation for Nuclear Research (CERN), that houses the LHC, will make attempts to collide the two beams at 7 TeV, to create conditions similar at the time of the Big Bang - that is believed to have created the universe.
Indian scientists will join their counterparts from across the world who would observe the collisions as they happen.
When the proton beams collide, 800 million collisions per second would take place and powerful detectors installed at the site would gather data of each of the collisions.
It is the analysis of this data that could lead to the discovery of the Higgs boson, also called as the 'God particle', that is believed to have existed when the universe was born, said Prof Satyaki Bhattacharya of Delhi University who is involved in the LHC experiment.
Researchers will sift through the subatomic debris of proton collisions for signs of extra dimensions that will bolster belief in "supersymmetry", a theory that doubles the number of particle species in the universe.
The LHC is designed to collide two 7 TeV proton beams, but scientists decided in January to operate the machine at half the power until the end of 2011. The machine will then close for a year of further engineering work to ensure it can run at full power in 2013 without breaking down again.
For scientists at CERN and elsewhere, the beginning of high-energy collisions will end a long period of working without any real data. Until recently, many physicists have had to make do with computer simulations of particle collisions.
CERN researchers will sift through the subatomic debris of proton collisions for signs of extra dimensions and hitherto invisible particles that will bolster belief in "supersymmetry", a theory that doubles the number of particle species in the universe. Other results may point to "hidden worlds" of particles and forces that we are oblivious to because they do not interact with everyday matter.

No comments: